Publikationen in internationalen Fachzeitschriften mit Gutachter-Verfahren (peer-review)




Biedermann, P. H. (2020). Cooperative breeding in the ambrosia beetle Xyleborus affinis and management of its fungal symbionts. Frontiers in Ecology and Evolution, 8, 363.

Ibarra-Juarez, L. A., Burton, M. A. J., Biedermann, P. H. W., Cruz, L., Desgarennes, D., Ibarra-Laclette, E., ... & López, L. (2020). Evidence for Succession and Putative Metabolic Roles of Fungi and Bacteria in the Farming Mutualism of the Ambrosia Beetle Xyleborus affinis. Msystems, 5(5).

Grubbs, K. J., Surup, F., Biedermann, P. H. W., McDonald, B. R., Klassen, J. L., Carlson, C. M., ... & Currie, C. R. (2020). Cycloheximide-producing Streptomyces associated with Xyleborinus saxesenii and Xyleborus affinis fungus-farming ambrosia beetles. Frontiers in Microbiology, 11, 2207.

Mayers, C. G., Harrington, T. C., Mcnew, D. L., Roeper, R. A., Biedermann, P. H. W., Masuya, H., & Bateman, C. C. (2020). Four mycangium types and four genera of ambrosia fungi suggest a complex history of fungus farming in the ambrosia beetle tribe Xyloterini. Mycologia, 1-34.

Biedermann, P.H.W. and F.E. Vega, Ecology and evolution of insect–fungus mutualisms. Annual Review of Entomology, 2020. 65: 431-455.

Nuotclá, J.A., P.H.W. Biedermann, and M. Taborsky, Pathogen defence is a potential driver of social evolution in ambrosia beetles. Proceedings of the Royal Society B: Biological Sciences, 2020 doi:

Vega, F.E., and P.H.W. Biedermann, On interactions, associations, mycetangia, mutualists and symbiotes in insect-fungus symbioses. Fungal Ecology, 2020 doi:




Biedermann, P.H.W., et al., Bark Beetle Population Dynamics in the Anthropocene: Challenges and Solutions. Trends in Ecology & Evolution, 2019. 34(10): p. 914-924.

Biedermann, P.H.W., H.H. De Fine Licht, and M. Rohlfs, Evolutionary chemo-ecology of insect-fungus interactions: Still in its infancy but advancing. Fungal Ecology, 2019. 38: p. 1-6.

Lehenberger, M., et al., – Take good care of my fungi – Fungus-spore carrying organs in Tryopodendron ambrosia beetles. Mitteilungen der Deutschen Gesellschaft fuer Allgemeine und Angewandte Entomologie, 2019. 22: p. 1-4.

Lehenberger, M., P.H.W. Biedermann, and J.P. Benz, Molecular identification and enzymatic profiling of Trypodendron (Curculionidae: Xyloterini) ambrosia beetle-associated fungi of the genus Phialophoropsis (Microascales: Ceratocystidaceae). Fungal Ecology, 2019.

Grubbs, K.J., et al., Cycloheximide-Producing Streptomyces Associated with Xyleborinus saxesenii and Xyleborus affinis Fungus-Farming Ambrosia Beetles. bioRxiv, 2019: p. 511493.

Seibold, S., et al., Fungi associated with beetles dispersing from dead wood – Let's take the beetle bus! Fungal Ecology, 2019. 39: p. 100-108.



Ranger, C.M., et al., Symbiont selection via alcohol benefits fungus farming by ambrosia beetles. Proceedings of the National Academy of Sciences, 2018. 115(17): p. 4447-4452.

Birkemoe, T., et al., Insect-fungus interactions in dead wood systems, in Saproxylic Insects, M.D. Ulyshen, itor. 2018, Springer. p. 377-427.

van de Peppel, L.J.J., D.K. Aanen, and P.H.W. Biedermann, Low intraspecific genetic diversity indicates asexuality and vertical transmission in the fungal cultivars of ambrosia beetles. Fungal Ecology, 2018. 32: p. 57-64.

Lehenberger, M., et al., Trypodendron domesticum (Linné) und Trypodendron lineatum (Olivier)(Curculionidae; Scolytinae) als potentielle Vektoren von xylobionten und sapro-xylobionten Pilzen. Mitteilungen der Deutschen Gesellschaft fuer Allgemeine und Angewandte Entomologie, 2018. 21.


Before 2017

Biedermann, P.H. and M. Rohlfs, Evolutionary feedbacks between insect sociality and microbial management. Current Opinion in Insect Science, 2017. 22: p. 92-100.

Vega, F., et al., Artificial diet sandwich reveals subsocial behaviour in the coffee berry borer Hypothenemus hampei (Coleoptera: Curculionidae: Scolytinae). Journal of Applied Entomology, 2016.

Dohet, L., et al., Bacterial and fungal symbionts of parasitic Dendroctonus bark beetles. FEMS microbiology ecology, 2016. 92(9).

Mayers, C.G., et al., Three genera in the Ceratocystidaceae are the respective symbionts of three independent lineages of ambrosia beetles with large, complex mycangia. Fungal Biology, 2015.

Kirkendall, L.R., P.H.W. Biedermann, and B.H. Jordal, Evolution and diversity of bark and ambrosia beetles., in Bark Beetles: Biology and Ecology of Native and Invasive Species, F.E. Vega and R.W. Hofstetter, Editors. 2015, Academic Press. p. 85-156.

Florez, L.V., et al., Defensive symbioses of animals with prokaryotic and eukaryotic microorganisms. Nat Prod Rep, 2015. 32(7): p. 904-36.

Biedermann, P.H.W. and M. Kaltenpoth, New synthesis: the chemistry of partner choice in insect-microbe mutualisms. J Chem Ecol, 2014. 40(2): p. 99.

Aylward, F.O., et al., Convergent bacterial microbiotas in the fungal agricultural systems of insects. MBio, 2014. 5(6): p. e02077.

Biedermann, P.H.W., Evolution of cooperation in ambrosia beetles. Mitteilungen der Deutschen Gesellschaft für allgemeine und angewandte Entomologie, 2014. 19: p. 191-202.

Nuotcla, J.A., M. Taborsky, and P.H.W. Biedermann, The importance of blocking the gallery entrance in the ambrosia beetle Xyleborinus saxesenii Ratzeburg (Coleoptera; Scolytinae). Mitteilungen der Deutschen Gesellschaft für allgemeine und angewandte Entomologie, 2014. 19: p. 203-210.

Biedermann, P.H.W., Fungiculturing beetles: The biology of ambrosia beetles and how to observe them. Artenschutzreport, 2014. 33: p. 43-45.

Biedermann, P.H.W., et al., Abundance and dynamics of filamentous fungi in the complex ambrosia gardens of the primitively eusocial beetle Xyleborinus saxesenii Ratzeburg (Coleoptera: Curculionidae, Scolytinae). FEMS Microbiology Ecology, 2013. 83(3): p. 711-723.

Biedermann, P.H.W., The evolution of cooperation in ambrosia beetles. 2012, Ph.D. thesis, University of Bern.

Biedermann, P.H.W., K. Peer, and M. Taborsky, Female dispersal and reproduction in the ambrosia beetle Xyleborinus saxesenii Ratzeburg (Coleoptera; Scolytinae). Mitteilungen der Deutschen Gesellschaft für allgemeine und angewandte Entomologie, 2012. 18: p. 231-235.

De Fine Licht, H.H. and P.H.W. Biedermann, Patterns of functional enzyme activity in fungus farming ambrosia beetles. Frontiers in zoology, 2012. 9(1): p. 13.

Grubbs, K.J., et al., Genome Sequence of Streptomyces griseus Strain XylebKG-1, an Ambrosia Beetle-Associated Actinomycete. Journal of Bacteriology, 2011. 193(11): p. 2890-2891.

Biedermann, P.H.W. and M. Taborsky, Larval helpers and age polyethism in ambrosia beetles. Proceedings of the National Academy of Sciences, 2011. 108(41): p. 17064-17069.

Biedermann, P.H., Observations on sex ratio and behavior of males in Xyleborinus saxesenii Ratzeburg (Scolytinae, Coleoptera). ZooKeys, 2010(56): p. 253.

Biedermann, P.H.W. and M.H. Kaercher, Weather-dependent activity and flight height of barn swallows, Hirundo rustica Linnaeus 1758, and house martinsDelichon urbicum (Linnaeus 1758). Egretta, 2009. 50: p. 76-81.

Biedermann, P.H., K.D. Klepzig, and M. Taborsky, Fungus cultivation by ambrosia beetles: behavior and laboratory breeding success in three xyleborine species. Environmental entomology, 2009. 38(4): p. 1096-1105.

Karcher, M.H., et al., Predator-prey interaction between drones of Apis mellifera carnica and insectivorous birds. Apidologie, 2008. 39(3): p. 302-309.

Delhey, K., et al., Optical properties of the uropygial gland secretion: no evidence for UV cosmetics in birds. Naturwissenschaften, 2008. 95(10): p. 939-946.

Biedermann, P.H., Social behaviour in sib mating fungus farmers, in Institute for Ecology and Evolution. 2007, University of Bern: Bern.

Biedermann, P.H.W., Hidden leks in the yellow-browed warbler Phylloscopus inornatus? - investigations from the Khan Khentey Reserve (Mongolia). Acrocephalus (Ljubljana), 2006. 27(128-129): p. 21-35.